
APPC, Mechanics: Unit  HW 3         Name: ________________________________________ 
                      Hr: ____     Due at beg of hr on: ______________ 
U, HW3, P1 
Reference Videos:  (1) “Derivation of the Rotational Inertia of a Solid Disk”  
       (2) “Rotational Inertia for a Cylinder”  YouTube, lasseviren1 
 

A. Write the equation for the moment of inertia of a hoop (or ring) for 
rotating, wheel-like, about its central axis. See the figure at right.  

 

B. An equation that ALWAYS WORKS to find any moment of inertia  
is your answer to Part D of HW2, P5. Rewrite that equation here. 

 

C. Explain how your Part B answer easily simplifies to your Part A answer. In your response,  
specifically mention what is true for each of the many dm pieces of the hoop.  

 
 
 

D. Write the equation for the moment of inertia of a solid disk of uniform mass  
density for rotating, wheel-like, about its central axis. See the figure at right.  

 
We now will derive your Part D answer. To do so, we must break the disk into many very-thin hoops. 
 

E. Into the large figure of the solid disk at right, draw ONE of the very-thin hoops. Label its  
distance from the axis as r, its very-thin thickness as dr, and its very-tiny mass as dm. 

 

In the previous assignment, we met the linear mass density  . Disks, however, don’t  

have lengths; they have areas. This brings us to surface mass density  𝜎 =
𝑚𝑎𝑠𝑠

𝑎𝑟𝑒𝑎
 .   

 

F. Slight digression: Using the equation just presented, write the 
expression for the   of the entire disk, in terms of M and R.   

 

G. But now, we need an expression for   for our very-thin hoop, and 
to do that, we need its mass. What is that mass? (HINT: See Part E.) 

 

H. We also need the hoop’s area. If we took the hoop out, cut it as if snipping a rubber band, and unrolled 

it, it would be a rectangle having length __________ and width ____; thus, its area would be ______________.  
 

I. Substitute your Parts G and H answers into the   equation given  
above Part F, to obtain an expression for   for our very-thin hoop. 

 
J. Solve your Part I equation for dm. 
 
K. Substitute your Part J answer into your Part B answer, and 

simplify. Check your drawing above, figure out the integration 
limits for r, and be sure to include those limits on your answer.  

 

L. Carry out the integration of your Part K answer.  
 
M. To finish, substitute your Part F answer into your Part L answer. If you’ve  

done it correctly, this should yield your response from way back in Part D.  
  

N. In the second video, the narrator derives the moment of inertia for a uniform 
cylinder. But a cylinder is nothing more than a very thick disk! Therefore, a 
cylinder’s moment of inertia should be given by WHAT equation? Write it here. 



U, HW3, P2 
Reference Videos:  (1) “Rotational Inertia of a Slender Rod with Non-uniform Mass Density”  
       (2) “Rotational Inertia of a Disk with Non-uniform Mass Density” 

YouTube, lasseviren1 
 

First, we derive the moment of inertia of a NON-uniform rod having a linear mass density  
that varies with position r according to the known equation  (r) =  r , where   is a (+) 
constant. (Perhaps you will notice the shading in the figure, which is meant to indicate that 
the rod becomes more dense as we approach the top of the page.) We wish to find the 
moment of inertia for the rod if it were to rotate about the axis shown at the bottom.  
 

A. Start by writing the equation for finding any moment of inertia. 
This was your answer to Part D of HW2, P5 and Part B of HW3, P1. 

 

B. On the rod in the figure, draw in a tiny dm element, labeling it as dm. Designate  
that this dm element is a distance r from the axis AND that the dm element has a length dr.  

 

C. We need the mass of the dm element from Part B. Since   =
𝑚𝑎𝑠𝑠

𝑙𝑒𝑛𝑔𝑡ℎ
  ,  we can 

write   (𝑟) =
𝑑𝑚

𝑑𝑟
 . Well, we are given that, for this NON-uniform rod, (r) =  r . 

Combine these last two equations, and then solve your result for dm.  

 
D. Substitute your Part C answer into your Part A answer. Include the limits of integration. 

 
E. Integrate and simplify your Part D answer. You did it! 
 

 
 

We now derive the I of a NON-uniform disk having a surface mass density 𝜎 =
𝑚𝑎𝑠𝑠

𝑎𝑟𝑒𝑎
  

that varies with distance from the axis r according to the known equation  (r) =  r , 
where   is a (+) constant. The shading in the figure (assuming you can see it) 
indicates that the disk becomes more dense as we approach its edges. We wish to 
find the moment of inertia for the disk as it rotates about its central axis.  
 
F. On the disk, draw in a tiny dm ‘hoop’ element, labeling it as dm.  

Show that the element has a radius r AND that it has the thickness dr.  
 

G. We need the mass of the dm ‘hoop’ element from Part F. Since  𝜎 =
𝑚𝑎𝑠𝑠

𝑎𝑟𝑒𝑎
  ,  we can  

also write   (𝑟) =
𝑑𝑚

𝑡𝑖𝑛𝑦−ℎ𝑜𝑜𝑝 𝑎𝑟𝑒𝑎
 .  Well, we know the left side of that equation, since  (r) =  r .  

For the denominator on the right side....If we took the hoop out, cut it as if snipping a rubber band, and 

unrolled it, it would be a rectangle of length _________ and width ____; thus, its area would be _____________.  

 
H. Combine the two  (r) equations in Part G AND the  

last equation in Part G...and then solve your result for dm.  
 
 

I. Substitute your Part H answer into your Part A answer (which, of course,  
still applies, since it ALWAYS does...). Include the limits of integration. 

 
J. Integrate and simplify your Part I answer. Done! 



U, HW3, P3 
Reference Video:  “The Parallel Axis Theorem”  

YouTube, lasseviren1, ROTATIONAL MOTION playlist 
 

A. The parallel-axis theorem allows you to do what? 
 
 
B. Write the equation for the parallel-axis theorem.  

 
C. In your Part B answer, describe what is meant by the term that is squared. (Depending on the source, 

this term is given various labels, which is why I just refer to it as “the term that is squared”). 
 
 
D. Look at your Part B answer again and then CIRCLE your answers below. 
 

 “The rotational inertia through any non-com axis will always be     LARGER     SMALLER     than the 

rotational inertia through a com axis. In other words, the rotational inertia through a com axis 

represents a     MINIMUM     MAXIMUM     rotational inertia for any object about a given com axis.” 

 
 

The figure at right shows a uniform disk that is to be rotated about a point that is 
NOT through its com. If you can imagine stabbing a cardboard pizza disk with a 
pencil at Point P (or, in just a minute, Point Q), and then holding the pencil and 
whirling the disk around on it...that’s essentially what we’re doing here. 
 

E. Before we start, do you expect I to be larger about Point P, or about Point Q? Explain. 
 
 
F. Okay, here we go. First, determine Icom for the disk.  

HINT: Look back at Part D (and M) on HW3, P1. 
 

G. Use the parallel-axis theorem to find I about Point P. Show work and fully simplify. 

 
 
H. Now, determine the moment of inertia about Point Q. Show your work, simplify your answer, and then 

comment on your answers to Parts E, G, and H. 

 
 
 
 
The figure shows a uniform rod being rotated about a point halfway between the center 
and one end. Rulers often have multiple, pre-drilled holes: If there were a hole at Point P 
and you put a pencil there and whirled the ruler around...that’s what’s happening. 
 

I. Determine Icom for the rod. HINT: Look back in the commentary prior to Part E on HW2, P5.  
 

J. Use the parallel-axis theorem to determine I for this situation. Show work and fully simplify.  

 
 
K. Look back at HW2, P5, Part H. How does your answer THERE compare with your Part J answer HERE? 



U, HW3, P4 
Reference Video:  “Rotational Dynamics”  

YouTube, lasseviren1, ROTATIONAL MOTION playlist 
 

                         TRANSLATION   ROTATION 
 

A. At right, write equations for Newton’s 2nd law. Either form (the  
YES-denominator form or the NO-denominator form) is fine.  

 

The figure shows a uniform disk that is nailed to the wall through its com such that it 
can rotate about its com. A light string is wrapped around-and-around the disk, and a 
constant force is applied to the string. Assume that the nail is a frictionless axle. 
 

B. Besides the tension in the string, there are two other forces that act on the disk.  
Into the figure, at the proper location(s), draw and label these two other forces.  

 

C. In just a minute, you will apply Newton’s 2nd law for rotation to the disk, BUT... 
when you do, you will NOT include the forces from your Part B answer. Why not? 

 
 
D. Determine the net torque on the disk. Include proper units. 

 
E. Determine the I of the disk, about its com. HINT: See HW3, P3, Part F. 

 
F. Use Newton’s 2nd law and your Parts D and E answers to determine the angular acceleration of the disk. 
 
 
G. Is your Part F answer constant for this situation, or not? Explain how you know. 
 
 
H. If there WERE friction from the axle, what would that do to your Part F answer? 
 

This figure shows a uniform rod that is pinned at one end and free at the other. At 
the free end, there is an additional suspended mass. The rod-mass system is 
released from rest, with the rod initially in a horizontal position.  

 

I. Determine I for the rod. HINT: Begin with your work on Part I of HW3, P3 and then – because the axis is 
NOT through the com – use the parallel-axis theorem. (Or you could just look up the formula...) 

 
J. Determine I for the suspended mass. Refer back to Parts A and C of HW2, P5. 
 
K. The total I for a compound system is simply the sum of the Is for each part. So, 

add your Parts I and J answers to obtain the total I of the rod-mass system.  
 
L. Determine the net initial torque on the rod-mass system. 

 
M. Determine the initial angular acceleration of the rod-mass system. 
 
 
N. Is your Part M answer constant, as the rod descends? Explain your answer. 
 
 



U, HW3, P5 
Reference Video:  “Rotational Dynamics (Part II)”  

YouTube, lasseviren1, ROTATIONAL MOTION playlist 
 

A. The cylinders at right start from rest. In Case I, there is no friction; in Case II, 
there IS. On the ‘dashed’ cylinders, use symbols to show what is happening in the 
‘dashed’ location. These symbols include a labeled velocity arrow (originating on 
a cylinder’s com) and pointing in the direction of the velocity (or not!)     AND  
 ⤾  or  ⤿  to show rotation (or not!). Don’t represent anything that isn’t happening. 

 

B. Notice the straight line ‘painted’ on the top-of-the-ramp cylinders. Onto each ‘dashed’ cylinder, draw an 
identical line...but at an orientation that is plausible, based on what you said in your Part A answers. 

 

C. To reinforce what you’ve done in Parts A and B... “In Case I, the absence of friction means that the 

cylinder will merely __________ down the ramp, i.e., it will NOT ________ down the ramp. On the other 

hand, in Case II, the friction between the cylinder and ramp applies a net __________________ to the 

cylinder, which causes the cylinder to ________ down the ramp, rather than __________ down the ramp.”  
 

D. One VERY important point when dealing with a rolling object is that, in our FBD, we need to draw all 

forces where they ___________________ ___________. A second important point is that we should choose the 

axis to be through the object’s ______________ ____ _________. When we do that, two forces that contribute 

ZERO torque to the rolling object are the ________________ force and the force of ________________. This is 

because the __________ ____ _____________ of those two forces go directly through the ________.  

 

The figure shows a solid, uniform cylinder. When released from rest, it rolls without slipping. As we will 
see here, analyzing rolling requires us to use BOTH of Newton’s 2nd laws (rotation and translation), as 
well as a bridge equation that connects the two. Three equations, three unknowns, yada-yada-yada... 
 

E. In the circle below the figure, draw the FBD that applies. HINT: Label the friction 
force merely as Ff. Make NO reference to   for the rest of this assignment.   

 

F. Write the Newton’s 2nd law equation for rotation that applies, and simplify it.  
HINT: You might want to look back at HW3, P1, Part N.  

 
 
G. Write the Newton’s 2nd law equation for translation.  

There is only one: in the down-the-ramp direction.  
 
 
H. Write the bridge equation that connects your  

Parts F and G answers. (See HW1, P5, Part A.) 
 
I. Substitute your Part H answer into your Part G  

answer, and solve for the force of friction. 
 
J. Substitute your Part I  

answer into your Part F  
answer, and solve for  
the angular acceleration.                            TO BE CONTINUED... 


