APPC, Mechanics: Unit δ HW 2 Name: ______ Hr: _____ Due at beg of hr on: ______ Uδ. HW2, P1

Uδ, HW2, P1	
Reference Videos:	(1) "Escape Velocity"
	(2) "Binary Star Systems" YouTube Jasseviren1 PLANETARY/SATELLITE MOTION AND GRAVITY playlist
	Tourube, lassevirenii, i Enne inner sini Elleri E morron med dianviri playise
A. Escape velocity	is the launching velocity required for an object to
(Th	is assumes that no is added along the way.) To review, all kinetic
energies have a	sign that is, and all absolute gravitational potential energies have a sign that is
So, if we don't w	ant to be to Earth, then we need to have a total energy that is at least
In the figure, a mas celestial body of ma	s <i>m</i> is launched with escape velocity v_e from the surface of a ass <i>M</i> and radius <i>R</i> . We want a general expression for v_e .
B. Using the variab energy <i>m</i> will ha it will have when	les v_e and R , write an equation depicting the total ave at the instant of lift-off. This is the total energy in it is a distance R from M 's center, i.e., $E_{r=R} = ?$
C. After <i>m</i> is launch	ed at a speed of <i>v_e</i> , its speed thereafter will with time.
D. Explain your Par	t C answer. Make reference to one or more aspects of Newton's 2 nd law.

- E. For the conditions of escape velocity to be satisfied, *m* must reach a distance of $r = \infty$. Using the variables $v_{r=\infty}$ and $r_{r=\infty}$ (\bigcirc), write an equation that depicts the total energy *m* will have at $r = \infty$, i.e., $E_{r=\infty} = ?$
- F. Since we will be conserving energy, use that fact to combine your Parts B and E answers so that relevant terms of the situation are still visible. Do NOT yet simplify.
- G. *Mentally* modify the right side of your Part F answer by carrying your Part C answer to its logical conclusion AND by inputting information from the Part E question. Having accounted for these modifications, write your modified Part F equation here.
- H. Simplify your Part G answer to obtain an expression for *ve*.
- I. A **binary star system** consists of two stars that revolve about their common ______ ___ _____

(i.e., their _____). We believe that ______ stars in our universe exist in binary star systems.

J. Assuming M > m, depict (and label) the first sentence of your Part I answer using the figure below. Show the orbital paths (assume circular) for each star and label the radii of the orbits as r_m and r_M .

K. CIRCLE which star has the larger:

i. period of motion	т	М	iťs a tie		
ii. tangential velocity	т	М	it's a tie		M
iii. force of gravity on it	т	М	it's a tie		
iv. acceleration	т	М	it's a tie		

Uδ, HW2, P2 Reference Video:

"Kinematics of Simple Harmonic Motion (Part I)" YouTube, lasseviren1, SIMPLE HARMONIC MOTION playlist

<u>NOTE</u>: The line of reasoning here and in subsequent assignments differs slightly from the videos. Nonetheless, you will benefit from having watched those in advance of trying the next few assignments.

The figure shows an object in uniform circular motion (UCM). PLEASE IMAGINE that the *xy*-axes shown are at the circle's center.

A. Make the following additions to the figure.

- i. One point on the circle already has two vectors. Label these (correctly!) as \vec{v} and \vec{a} .
- ii. At the other four designated points, draw and label \vec{v} and \vec{a} vectors of the correct direction and length.
- iii. On the pre-drawn \vec{v} vector (see Part Ai), draw components v_x and v_y , based on the *xy*-axes shown. (Again, imagine that these are at the center).

iv. On the pre-drawn radius *R*, draw in and label its components as *x* and *y*.

v. Label the angle between *R* and *x* as θ .

B. Let's digress for a minute... Write the:

i. velocity bridge equation

ii. acceleration bridge equation

 ω = constant

- C. Write our often-used equation for centripetal acceleration.
- D. Substitute the right side of your Part Bi answer into your Part C answer and then simplify to obtain a (for us) lesser-used equation for centripetal acceleration.
- E. One last thing: Write what x is equal to, in terms of R and θ . (Look again at the figure.)
- F. Apply the next steps to ONLY the figure's four 'compass points', i.e., NOT to the point with the pre-drawn \vec{v} and \vec{a} vectors.

i. Put the appropriate subscript, either x or y , onto those points' \vec{v} and \vec{a} labels.

- ii. Enclose each of the \vec{v} and \vec{a} labels in absolute value signs and then write " = max " next to each one. Verify mentally that this claim is true for each of the compass-point \vec{v} and \vec{a} vectors.
- iii. TWO of these four $[a_x = 0 \quad a_y = 0 \quad v_x = 0 \quad v_y = 0]$ apply to each compass point. Write the correct two of them near each point.
- iv. ONE of these two $[|x| = max \quad x = 0]$ applies to each compass point. Write the correct one near each point.

G. CIRCLE every quantity in the figure that refers to the *x*-direction.

Let's digress again... Since $velocity = \frac{displacement}{time}$, we recall that $\omega = \frac{\Delta\theta}{\Delta t} = \frac{\theta_f - \theta_i}{t}$. If we rename θ_f as just θ and θ_i as ϕ , we get... $\omega = \frac{\theta - \varphi}{t}$.

H. Solve this last expression for θ .

I. Substitute your Part H answer into your Part E answer.

J. Your Part I answer is an equation for *x*-position vs. time. If you differentiate this once, you'll get an equation for the

x-______vs. time; if you differentiate it once more, you'll get an equation for the x-______vs. time.

K. Differentiate your Part I answer:

i. ...once here...

ii. ...and once more over here.

(Your answers will agree with the video, with the notable exceptions that you'll have *R* instead of *A* and $(\omega t + \phi)$ instead of (ωt) .

Uδ, HW2, P3

Reference (1) "Kinematics of Simple Harmonic Motion (Part I)"
Videos: (2) "Kinematics of Simple Harmonic Motion (Part II)"
YouTube, lasseviren1, SIMPLE HARMONIC MOTION playlist

We continue from HW2, P2...

A. The maximum value that a *sin* or *cos* function can have is _____.

B. Given your Part A answer, your Parts I and K answers from P2 reveal that, for the circular motion depicted at the top of that assignment and partially reproduced in the figure at right...

i.	$ x_{max} = $	which occurs at the following TWO points:
----	----------------	---

ii. $|v_{x,max}| =$ _____ ...which occurs at the following TWO points:

iii. $|a_{x,max}| =$ _____ ...which occurs at the following TWO points:

- C. State how what you wrote in the blanks in Parts Bii and Biii above compares to Parts Bi and D from P2.
- D. State how what you circled in Part B compares to the MAX *x*-quantities you circled in Part G on P2.

The thinking and mathematical formulating we've done so far in P2 and P3 (specifically, in the *x*-direction) correspond EXACTLY to the kinematics of a mass *m* oscillating on a spring of constant *k*. The figure at right shows such a case, on a frictionless surface. It is as if the figure at the top of the page is a 'bird's eye' view and the figure here is an elevation view. Note

E. Write THREE of the following six choices onto EACH depiction of the mass in the figure.

|x| = max x = 0 $|v_x| = max$ $v_x = 0$ $|a_x| = max$ $a_x = 0$

F. State how your Part E answers compare to your Part B answers.

G. Look at both figures: What is the mathematical relationship between A and R?

H. State how what you wrote in the blank in Part Bi compares to your Part G answer.

I. Write three equations by substituting your Part G answer into your Parts I and K answers from P2.

$$x(t) =$$

v(t) = a(t) =

** Your Part I answers are the kinematics equations for simple harmonic motion (SHM) of a mass on a spring. Hopefully, now, you see the correspondence between the SHM of a mass on a spring and UCM.

J. The ϕ term in your Part I answers has to do with WHERE *m* starts on its back-and-forth journey, i.e., when *t* = 0. (More on this later.) The graphs below depict position-vs.-time for *m* starting at various points. Your task here is to (1) figure out how the graphs correspond to the two figures above, and (2) write one letter – either N, S, E, or W – at EACH point of maximum *x* AND EACH point where *x* = 0.

Uδ, HW2, P4
 Reference Videos: (1) "Kinematics of Simple Harmonic Motion (Part III)"
 (2) "Dynamics of Simple Harmonic Motion"
 YouTube, lasseviren1, SIMPLE HARMONIC MOTION playlist

A. In UCM and SHM, the period <i>T</i> is essentially the number of for one, i.e., the period of the number of						
for one	(So, obviously, the best SI un	it for period <i>T</i> is abbrev	iated) The			
<u>frequency</u> <i>f</i> is the number of	per, and	is often measured in the	e unit,			
which is abbreviated A mat	thematical equation that relate	es period <i>T</i> to frequency	f is			
Specifically in UCM or SHM, the	variable ω is called the		and has the			
unit of per	In the sinusoidal curves	that we met in the last a	issignment, one			
complete cycle of UCM or SHM is	s equivalent to radians of a	angular displacement. T	herefore, if we			
focus on the period of a single cy	vcle, we see that ω =; if w	ve focus on frequency, th	ten ω =			
The figure at right shows a mass th	The figure at right shows a mass that oscillates in SHM.					
B. Below the figure, draw an FBD of at some distance x between $x = 0$ of them is F_{elas}) should originate	f the mass when it is located) and <i>x</i> = + <i>A</i> . All forces (one on the <i>com</i> of the object.	mass m	$\mu_k = 0$			
C. Hooke's law is $F_{elas} = -k x$. The el	astic force is one type of	x = -A $x =$	x = +A			
restoring force, which is any fo	rce whose magnitude is					
	to the object's (or system's)				
D. The (-) sign in Hooke's law indic	ates WHAT?					

E. Based on your FBD, write an *x*-direction, Newton's 2nd law equation. Substitute into it the Hooke's law equation given in Part C, then solve your equation for the mass's acceleration.

F. Into your Part E answer, substitute suitable answers from HW2, P3, Part I. Solve for angular frequency.

G. Use your Part F answer to determine the angular frequency of the mass-spring systems given below.

i. $m = 2 \text{ kg}$	ii. <i>m</i> = 24 kg	iii. <i>m</i> = 100 kg
<i>k</i> = 32 N/m	k = 6 N/m	<i>k</i> = 4900 N/m

H. Use an equation you wrote in your Part A answers to determine the period for each of the systems in Part G. Round your answers to two places past the decimal, and include the correct unit.

i.

iii.

I. Combine your Part F answer with the equation you used in completing Part H to derive a (hopefully) recognizable equation for the period of a mass-spring system.

ii.

Uδ, HW2, P5 Reference Video:

"Simple Harmonic Motion and Energy Conservation" YouTube, lasseviren1, SIMPLE HARMONIC MOTION playlist

The figure at right shows a mass oscillating in SHM. Answer the questions based on the variables shown in the figure.

A. CIRCLE all types of energy the system has at each location, then write an equation expressing the total energy at that point.

i.	x = -A	ELASTIC POTENTIAL	KINETIC	Energy equation:	$E_{x=-A} =$
ii.	<i>x</i> = 0	ELASTIC POTENTIAL	KINETIC	Energy equation:	$E_{x=0} =$
iii.	x = x	ELASTIC POTENTIAL	KINETIC	Energy equation:	$E_{x=x} =$
iv.	x = +A	ELASTIC POTENTIAL	KINETIC	Energy equation:	$E_{x=+A} =$

- B. Given that $\mu_k = 0$, it is a safe assumption that mechanical energy is ______ in this system.
- C. In terms of *k*, *A*, *m*, and *v*, derive an expression for the position *x* where the mass has the speed *v*.
- D. Show that your Part C answer gives you one or more recognizable locations x when v = 0.
- E. In terms of *A*, *x*, *m*, and *k*, derive an expression for *v* when the mass is at location *x*.
- F. Check your work up to this point by plugging your Part D answers into your Part E answer. What result do you obtain?
- G. Using your Part E answer...At what location *x* will *v* be maximized?
- H. Obtain an expression for $|v_{max}|$ by plugging your Part G answer into your Part E answer.
- I. Substitute your answer from Part F of HW2, P4 into your Part H answer.
- J. Comment on how your Part I answer corresponds to what your HW2, P3, Part I answer has to say about v_{max} .

K.	When we maximize the stretch (or compression) of a spring, we also maximize the _					force	
	exerted by the spring, in accor	d with the equation	n of	law, which is	=	And for	
	a mass-spring system oscillating in			motion, a maxin	motion, a maximizing of the force		
	above will also go along with a maximizing of the mass's			, a	ccordii	ng to the	
	equation of	law. which is	= .				