Name: \qquad
Hour: \qquad

Chemistry: Review Problems for the Gas Laws

Do the following problems, showing your work and including all proper units.

Graham's Law

1. At $350^{\circ} \mathrm{C}$, nitrogen has a velocity of $800 \mathrm{~m} / \mathrm{s}$. Find the velocity of helium at the same temperature.
2. At room temperature, acetylene $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ has a velocity of $480 \mathrm{~m} / \mathrm{s}$. At the same temperature, an unknown noble gas has a velocity of $267 \mathrm{~m} / \mathrm{s}$. What is the unknown gas?

Gas Laws with One Term Constant

3. A sample of gas has an initial volume of 25 L and an initial pressure of 3.5 atm . If the pressure changes to 1.3 atm, find the new volume, assuming that the temperature remains constant.
4. A sample of neon is at $89^{\circ} \mathrm{C}$ and 123 kPa . If the pressure changes to 145 kPa and the volume remains constant, find the new temperature, in ${ }^{\circ} \mathrm{C}$.

Combined Gas Law

5. A gas at STP occupies $28 \mathrm{~cm}^{3}$ of space. If the pressure changes to 3.8 atm and the temperature increases to $203^{\circ} \mathrm{C}$, find the new volume.
6. A sample of sulfur dioxide $\left(\mathrm{SO}_{2}\right)$ is initially at a temperature of $133^{\circ} \mathrm{C}$, a volume of 20 L , and a pressure of 850 mm Hg . If the volume changes to 25 L and the temperature increases to $181^{\circ} \mathrm{C}$, find the new pressure.

Ideal Gas Law

7. 25 g of methane $\left(\mathrm{CH}_{4}\right)$ has a pressure of 4.44 atm at $250^{\circ} \mathrm{C}$. Find the volume occupied by the gas.
8. A sample of gas has a volume of 5.0 L when at a temperature of 310 K and a pressure of 220 kPa .
a) Find the number of moles of gas.
b) If there are 56 g of the gas in the sample, which noble gas is it?

Manometers: For each manometer, find the pressure of the confined gas, in kPa .
9.

Gas Stoichiometry

11. a) Write a balanced chemical equation for the combustion of methane to form carbon dioxide and water.
b) If the methane has a volume of 0.65 L when under 100 kPa of pressure and at a temperature of 305 K , find the mass of oxygen that is needed to use up all of the methane.
12. $2117 \mathrm{~m} / \mathrm{s}$
13. $\mathrm{mm} \sim 84 \mathrm{~g}, \mathrm{Kr}$
14. 67 L
15. $154^{\circ} \mathrm{C}$
16. $\quad 12.8 \mathrm{~cm}^{3}$
17. 760 mm Hg
18. $\quad 15.1 \mathrm{~L}$

8a. $\quad 0.43$ moles

[^0]
Chemistry: Review Problems for the Gas Laws

Do the following problems, showing your work and including all proper units.

Graham's Law

1. At $350^{\circ} \mathrm{C}$, nitrogen has a velocity of $800 \mathrm{~m} / \mathrm{s}$. Find the velocity of helium at the same temperature.
Nitrogen $\left\{\begin{array}{l}\mathrm{m}_{2}=28 \mathrm{amu} \\ \mathrm{v}_{2}=800 \mathrm{~m} / \mathrm{s}\end{array}\right.$

$$
\frac{v_{1}}{v_{2}}=\sqrt{\frac{m_{2}}{m_{1}}}
$$

$$
\frac{v_{1}}{800 \mathrm{~m} / \mathrm{s}}=2.64
$$

Helium $\left\{\begin{array}{l}\mathrm{m}_{1}=4 \mathrm{amu} \\ v_{1}=? \mathrm{~m} / \mathrm{s}\end{array}\right.$

$$
\frac{v_{1}}{800 \mathrm{~m} / \mathrm{s}}=\sqrt{\frac{28 \mathrm{amu}}{4 \mathrm{amu}}}
$$

$$
v_{1}=2117 \mathrm{~m} / \mathrm{s}
$$

2. At room temperature, acetylene $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ has a velocity of $480 \mathrm{~m} / \mathrm{s}$. At the same temperature, an unknown noble gas has a velocity of $267 \mathrm{~m} / \mathrm{s}$. What is the unknown gas?

Gas Laws with One Term Constant

3. A sample of gas has an initial volume of 25 L and an initial pressure of 3.5 atm . If the pressure changes to 1.3 atm , find the new volume, assuming that the temperature remains constant.

$$
\begin{array}{lll}
& & P_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} \\
\mathrm{~V}_{1}=25 \mathrm{~L} & \mathrm{~V}_{2}=? \mathrm{~L} & \\
\mathrm{P}_{1}=3.5 \mathrm{~atm} & \mathrm{P}_{2}=1.3 \mathrm{~atm} & \text { ब. } 5 \mathrm{~atm} \mathrm{~L}_{3}=\$.3 \mathrm{~atm} \mathrm{~V}_{2}- \\
& & \mathrm{V}_{2}=67.3 \mathrm{~L}
\end{array}
$$

4. A sample of neon is at $89^{\circ} \mathrm{C}$ and 123 kPa . If the pressure changes to 145 kPa and the volume remains constant, find the new temperature, in ${ }^{\circ} \mathrm{C}$.

$$
\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}
$$

$$
\begin{array}{ll}
\mathrm{T}_{1}=89^{\circ} \mathrm{C}+273=362 \mathrm{~K} & \mathrm{~T}_{2}=?{ }^{\circ} \mathrm{C} \\
\mathrm{P}_{1}=123 \mathrm{kPa} & \mathrm{P}_{2}=145 \mathrm{kPa}
\end{array} \quad \frac{123 \mathrm{kPa}}{362 \mathrm{~K}}=\frac{145 \mathrm{kPa}}{\mathrm{~T}_{2}} \quad \begin{aligned}
& \mathrm{K}-273={ }^{\circ} \mathrm{C} \\
& 427-273={ }^{\circ} \mathrm{C} \\
&
\end{aligned}
$$

$$
\mathrm{T}_{2}=427 \mathrm{~K}
$$

$$
\begin{aligned}
& \text { Acetylene }\left\{\begin{array}{l}
m_{2}=26 \mathrm{amu} \\
v_{2}=480 \mathrm{~m} / \mathrm{s}
\end{array} \quad \frac{v_{1}}{v_{2}}=\sqrt{\frac{m_{2}}{m_{1}}}\right. \\
& \left(.80^{-2}=\frac{\mathrm{m}_{2}}{26 \mathrm{amu}}\right. \\
& \mathrm{m}_{2}=84 \mathrm{amu} \\
& \text { Unknown }\left\{\begin{array}{l}
m_{1}=? \mathrm{amu} \\
v_{1}=267 \mathrm{~m} / \mathrm{s}
\end{array} \quad \frac{480 \mathrm{~m} / \mathrm{s}}{267 \mathrm{~m} / \mathrm{s}}=\sqrt{\frac{\mathrm{m}_{2}}{26 \mathrm{amu}}} \quad \therefore \text { Krypton }(\mathrm{Kr}=83.80 \mathrm{amu})\right.
\end{aligned}
$$

Chemistry: Review Problems for the Gas Laws

Combined Gas Law

5. A gas at STP occupies $28 \mathrm{~cm}^{3}$ of space. If the pressure changes to 3.8 atm and the temperature increases to $203^{\circ} \mathrm{C}$, find the new volume.

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}
$$

$\mathrm{V}_{1}=28 \mathrm{~cm}^{3} \quad \mathrm{~V}_{2}=? \mathrm{~cm}^{3}$

$$
V_{2}=12.8 \mathrm{~cm}^{3}
$$

6. A sample of sulfur dioxide $\left(\mathrm{SO}_{2}\right)$ is initially at a temperature of $133^{\circ} \mathrm{C}$, a volume of 20 L , and a pressure of 850 mm Hg . If the volume changes to 25 L and the temperature increases to $181^{\circ} \mathrm{C}$, find the new pressure.

$$
\begin{aligned}
& \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \\
& \mathrm{~V}_{1}=20 \mathrm{~L} \quad \mathrm{~V}_{2}=25 \mathrm{~L} \\
& \mathrm{~T}_{1}=133^{\circ} \mathrm{C}+273=406 \mathrm{~K} \\
& \mathrm{P}_{1}=850 \mathrm{~mm} \mathrm{Hg} \\
& \mathrm{~T}_{2}=181^{\circ} \mathrm{C}+273=454 \mathrm{~K} \\
& \mathrm{P}_{2}=\text { ? } \mathrm{mm} \mathrm{Hg} \\
& \frac{850 \mathrm{~mm} \mathrm{Hg}^{\top} \mathrm{CL}^{-}}{406 \mathrm{~K}}=\frac{\boldsymbol{P}_{2} \mathbf{R L}_{5}^{-}}{454 \mathrm{~K}} \\
& P_{2}=760 \mathrm{~mm} \mathrm{Hg}
\end{aligned}
$$

Ideal Gas Law

7. 25 g of methane $\left(\mathrm{CH}_{4}\right)$ has a pressure of 4.44 atm at $250^{\circ} \mathrm{C}$. Find the volume occupied by the gas.
$\begin{array}{lc}\mathrm{n}=25 \mathrm{~g} \mathrm{CH}_{4}\left(\frac{1 \mathrm{~mol} \mathrm{CH}_{4}}{16 \mathrm{~g} \mathrm{CH}_{4}}\right)=1.5625 \mathrm{~mol} \mathrm{CH}_{4} & \mathrm{PV}=\mathrm{nRT} \\ \mathrm{P}=4.44 \mathrm{~atm} & \therefore \mathrm{~V}=\frac{\mathrm{nRT}}{\mathrm{P}} \\ \mathrm{T}=250^{\circ} \mathrm{C}+273=523 \mathrm{~K} & \\ \mathrm{~V}=? \mathrm{~L} & \\ \therefore \mathrm{R}=0.0821 \mathrm{~atm} \cdot \mathrm{~L} / \mathrm{mol} \cdot \mathrm{K} & \mathrm{V}=\frac{\text { (.5625 mol CH}}{4} \text { (0.0821 atm } \cdot \mathrm{L} / \mathrm{mol} \cdot \mathrm{K} \$ 23 \mathrm{~K}^{-} \\ 4.44 \mathrm{~atm}\end{array}$

$$
V=15.1 \mathrm{~L}
$$

Chemistry: Review Problems for the Gas Laws

8. A sample of gas has a volume of 5.0 L when at a temperature of 310 K and a pressure of 220 kPa .
a) Find the number of moles of gas.

$$
\begin{aligned}
& P V=n R T \\
& \mathrm{P}=220 \mathrm{kPa} \\
& \mathrm{~T}=310 \mathrm{~K} \\
& \mathrm{~V}=5.0 \mathrm{~L} \\
& \therefore \mathrm{R}=8.314 \mathrm{kPa} \cdot \mathrm{~L} / \mathrm{mol} \cdot \mathrm{~K} \\
& \therefore \mathrm{n}=\frac{\mathrm{PV}}{\mathrm{RT}} \\
& \mathrm{n}=\frac{\mathrm{e} 20 \mathrm{kPa} \$.0 \mathrm{~L}}{\boldsymbol{\beta} .314 \mathrm{kPa} \cdot \mathrm{~L} / \mathrm{mol} \cdot \mathrm{~K} \boldsymbol{\mathrm { K }} 10 \mathrm{~K}}, \\
& \mathrm{n}=0.43 \mathrm{~mol}
\end{aligned}
$$

b) If there are 56 g of the gas in the sample, which noble gas is it?

$$
\begin{aligned}
& \text { Molar Mass }(\mathrm{MM})=\frac{\mathrm{g}}{\mathrm{~mol}} \\
& \text { Molar Mass }=\frac{56 \mathrm{~g}}{0.43 \mathrm{~mol}} \Rightarrow \mathrm{MM}=131.2 \mathrm{~g} / \mathrm{mol} \quad \therefore \text { Xenon }(\mathrm{Xe}=131.29 \mathrm{~g} / \mathrm{mol})
\end{aligned}
$$

Manometers: For each manometer, find the pressure of the confined gas, in kPa .
9.

600 mm
$-200 \mathrm{~mm}$

$$
400 \mathrm{~mm}\left(\frac{101.3 \mathrm{kPa}}{760 \mathrm{~mm} \mathrm{Hg}}\right)=53.3 \mathrm{kPa}
$$

$$
\begin{aligned}
& \mathrm{P}_{\text {Big }}=\mathrm{P}_{\text {small }}+\mathrm{P}_{\text {height }} \\
& \mathrm{P}_{\text {Big }}=101.3 \mathrm{kPa}+53.3 \mathrm{kPa} \\
& \mathrm{P}_{\text {Big }}=154.6 \mathrm{kPa}
\end{aligned}
$$

10. atmospheric pressure
$=100.4 \mathrm{kPa}$

325 mm

$$
-150 \mathrm{~mm}
$$

$$
175 \mathrm{~mm}\left(\frac{101.3 \mathrm{kPa}}{760 \mathrm{~mm} \mathrm{Hg}}\right)=23.3 \mathrm{kPa}
$$

$$
\mathrm{P}_{\text {Big }}=\mathrm{P}_{\text {small }}+\mathrm{P}_{\text {height }}
$$

$$
100.4 \mathrm{kPa}=\mathrm{P}_{\text {small }}+23.3 \mathrm{kPa}
$$

$$
P_{\text {small }}=77.1 \mathrm{kPa}
$$

Chemistry: Review Problems for the Gas Laws

Gas Stoichiometry

11. a) Write a balanced chemical equation for the combustion of methane to form carbon dioxide and water.

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

b) If the methane has a volume of 0.65 L when under 100 kPa of pressure and at a temperature of 305 K , find the mass of oxygen that is needed to use up all of the methane.

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}
$$

$$
\begin{array}{ll}
\mathrm{V}_{1}=0.65 \mathrm{~L} & \mathrm{~V}_{2}=? \mathrm{~L} \\
\mathrm{~T}_{1}=305 \mathrm{~K} & \mathrm{~T}_{2}=273 \mathrm{~K} \\
\mathrm{P}_{1}=100 \mathrm{kPa} & \mathrm{P}_{2}=101.3 \mathrm{kPa}
\end{array}
$$

$$
\frac{100 \mathrm{kPa} 05 \mathrm{~L}}{305 \mathrm{~K}}=\frac{101.3 \mathrm{kPa} / \mathrm{N}_{2}}{273 \mathrm{~K}}
$$

$$
\mathrm{V}_{2}=0.574 \mathrm{LCH}_{4} @ \text { STP }
$$

Substitute volume of methane gas @STP and solve ideal stoichiometry problem.

$$
\begin{gathered}
\underset{0.574 \mathrm{~L}}{\mathrm{CH}_{4}(\mathrm{~g})}+\underset{\mathrm{xg}}{2 \mathrm{O}_{2}(\mathrm{~g})} \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
\times \mathrm{g} \mathrm{O}_{2}=0.574 \mathrm{~L}\left(\frac{1 \mathrm{~mol} \mathrm{CH}_{4}}{22.4 \mathrm{LCH}_{4}}\right)\left(\frac{2 \mathrm{~mol} \mathrm{O}_{2}}{1 \mathrm{~mol} \mathrm{CH}_{4}}\right)\left(\frac{32 \mathrm{~g} \mathrm{O}_{2}}{1 \mathrm{~mol} \mathrm{O}_{2}}\right)=1.64 \mathrm{~g} \mathrm{O}_{2}
\end{gathered}
$$

8b. $\quad \mathrm{mm} \sim 131 \mathrm{~g}, \mathrm{Xe}$
9. $\quad 154.6 \mathrm{kPa}$
10. 77.1 kPa

11b. $1.64 \mathrm{~g} \mathrm{O}_{2}$

[^0]: 8b. $m m \sim 130 \mathrm{~g}, \mathrm{Xe}$
 9. $\quad 154.6 \mathrm{kPa}$
 10. 77.1 kPa

 11b. $1.64 \mathrm{~g} \mathrm{O}_{2}$

