2.1 The Atomic Theory of Matter

- Greek philosophers: Can matter be subdivided into fundamental particles?
- Democritus (460 370 BC): All matter can be divided into indivisible atomos.
- Dalton: Proposed atomic theory with the following postulates:
 - Elements are composed of atoms.
 - All atoms of an element are identical.
 - In chemical reactions atoms are not changed into different types of atoms. Atoms are neither created not destroyed.
 - Compounds are formed when atoms of elements combine.
- Atoms are the building blocks of matter.
- Law of constant composition: the relative kinds and numbers of atoms are constant for a given compound.
- Law of conservation of mass: during a chemical reaction, the total mass before reaction is equal to the total mass after reaction.
 - Conservation means something can neither be created nor destroyed. Here it applies to matter (mass). Later we will apply it to energy (Chapter 5).
- Law of multiple proportions: if two elements A and B combine to form more than one compound, then the mass of B that combines with the mass of A is a ratio of small whole numbers.
- Dalton's theory predicted the law of multiple proportions.

2.2 The Discovery of Atomic Structure

- By 1850 scientists knew that atoms were composed of charged particles.
- Subatomic particles: those particles that make up the atom,
- Recall the law of electrostatic attraction: like charges repel and opposite charges attract.

Cathode Rays and Electrons

- Cathode rays were first discovered in the mid- 1800s from studies of electrical discharge through partially evacuated tubes (cathode ray tubes or CRTs).
 - Computer terminals were once popularly referred to as CRTs (cathode ray tubes).
 - They are now commonly called VDTs (video display terminals)
- Cathode rays = radiation produced when high voltage is applied across the tube.
- The voltage causes negative particles to move from the negative electrode (cathode) to the positive electrode (anode).
- The path of the electrons can be altered by the presence of a magnetic field.
- Consider cathode rays leaving the positive electrode through a small hole.
 - If they interact with a magnetic field perpendicular to an applied electric field, then the cathode rays can be deflected by different amounts.
 - The amount of deflection also depends on the applied magnetic and electric fields.
 - The amount of deflection also depends on the charge-to-mass ratio of the electron.
 - In 1897 Thomson determined the charge-to-mass ratio of an electron.
 - Charge-to-mass ratio: 1.76 x 10⁸ C / g
 - C is a symbol for coulomb
 - SI unit of electric charge
- Millikan Oil-Drop Experiment
 - Goal: find the charge on the electron to determine its mass.
 - Oil drops were sprayed above a positively charged plate containing a small hole.
 - As the oil drops fall through the hole they acquire a negative charge.
 - Gravity forces the drops downward. The applied electric field forces the drops upward.
 - When a drop is perfectly balanced, then the weight of the drop is equal to the electrostatic force of attraction between the drop and the positive plate.
 - Millikan carried out the above experiment and determined the charges on the oil drops to be multiples of 1.60 x 10⁻¹⁹ C.
 - He concluded that the charge on the electron must be 1.60 x 10⁻¹⁹ C.
- Knowing the charge-to-mass ratio of the electron, we can calculate the mass of the electron:

$$Mass = \frac{1.60 \times 10^{-19} C}{1.76 \times 10^{8} C/g} = 9.10 \times 10^{-28} g$$

Radioactivity

- Radioactivity is the spontaneous emission of radiation.
- Consider the following experiment:
 - A radioactive substance is placed in a lead shield containing a small hole so that a beam of radiation is emitted from the shield.
 - The radiation is passed between two electrically charged plates and detected.
 - Three spots are observed on the detector:
 - A spot deflected in the direction of the positive plate.
 - A spot that is not affected by the electric field.
 - A spot deflected in the direction of the negative plate.
 - A large deflection toward the positive plate corresponds to radiation that is negatively charged and of low mass. This is called β-radiation (consists of electrons).
 - No deflection corresponds to neutral radiation. This is called γ-radiation (similar to X-rays).
 - A small deflection toward the negatively charged plate corresponds to high mass, positively charged radiation. This is called α-radiation (positively charged core of a helium atom).
 - **X**-rays and γ radiation are true electromagnetic radiation, whereas α and β -radiation are actually streams of particles helium nuclei and electrons, respectively.

The Nuclear Atom

- The 'plum pudding' model: an early picture of the atom.
- The Thomson model pictures the atom as a sphere with small electrons embedded in a positively charged mass.
- Rutherford carried out the following experiment:
 - A source of α-particles was placed at the mouth of a circular detector.
 - The α -particles were shot through a piece of gold foil.
 - Both the gold nucleus and the a-particle are positively charged, so they repel each other.
 - Most of the α -particles went straight through the foil without deflection.
 - If the Thomson model of the atom was correct, then Rutherford's results was impossible.
- Rutherford modified Thomson's model as follows:
 - Assume that the atom is spherical, but the positive charge must be located at the center.
 - In order for the majority of α-particles shot through a piece of foil to be undeflected, the majority of the atom must consist of empty space where the electrons can be found.
 - To account for the small number of large deflections of the α -particles, the center or **nucleus** of the atom must consist of a dense positive charge.

2.3 The Modern View of Atomic Structure

- The atom consists of positive, negative, and neutral entities (protons, electrons, and neutrons).
- Protons and neutrons are located in the nucleus of the atom, which is small. Most of the mass of the atom is due to the nucleus.
- Electrons are located outside of the nucleus. Most of the volume of the atom is the space where electrons are found.
- The quantity 1.602 x 10⁻¹⁹ C is called **electronic charge**. The charge on an electron is –1.602 x 10⁻¹⁹ C; the charge on a proton is +1.602 x 10⁻¹⁹ C.
- Masses are so small that we define the atomic mass unit, amu.
 - \blacksquare 1 amu = 1.66054 x 10⁻²⁴ g
 - The mass of a proton is 1.0073 amu, a neutron is 1.0087 amu, and an electron is 5.486 x 10⁻⁴ amu.
 - The angstrom is a convenient non-SI unit of length used to denote atomic dimensions.
 - Since most atoms have radii around 1 x 10^{-10} m, we define 1 A = 1 x 10^{-10} m.

Isotopes, Atomic Numbers, and Mass Numbers

- Atomic number (Z) = number of protons in the nucleus
- Mass number (A) = total number of nucleons in the nucleus (i.e., protons and neutrons).
- By convention, for element **X**, we write ${}_{Z}^{A}X$
- Isotopes have the same Z but different A.
 - There can be a variable number of neutrons for the same number of protons. Isotopes have the same number of protons but different numbers of neutrons.
 - An atom of a specific isotope is called a nuclide.
 - Examples: Nuclides of hydrogen include:
 - H-1 (protium); H-2 (deuterium); H-3 (tritium): tritium is radioactive

2.4 The Periodic Table

- The Periodic Table is used to organize the elements in a meaningful way.
- As a consequence of this organization, there are periodic properties associated with the periodic table.
- Columns in the periodic table are called groups.
 - Several numbering conventions are used (i.e. groups may be numbered from 1 to 18, or from 1A to 8A, and from 1B to 8B).
- Rows in the periodic table are called **periods**.
- Some of the groups in the periodic table are given special names.
 - These names indicate the similarities among group members.
 - Examples:
 - Group 1 or (1A): alkali metals
 - Group 17 or (7A): halogens
- **Metallic elements** are located on the left hand-side of the periodic table (most of the elements are metals).
- Nonmetallic elements are located in the top right-hand side of the periodic table.
- Elements with properties similar to both metals and nonmetals are called metalloids and are located at the interface between the metals and nonmetals.
 - These include the elements B, Si, Ge, As, Sb, and Te.
- Metals tend to be malleable, ductile, and lustrous and are good thermal and electrical conductors.
 Nonmetals generally lack these properties; they tend to be brittle solids, dull in appearance, and do not conduct heat of electricity well.

2.5 Molecules and Molecular Compounds

- A **molecule** consists of two or more atoms bound together.
- Each molecule has a chemical formula.
- The chemical formula indicates
 - 1. Which atoms are found in the molecule, and
 - 2. In what proportion they are found
- Compounds composed of molecules are molecular compounds
 - These contain at least two types of atoms.
- Different forms of an element have different chemical formulas are known as allotropes. Allotropes differ in their chemical and physical properties. (Chapter 7 will give more information on allotropes of common elements)

Molecular and Empirical Formulas

- Molecular formulas
 - Give the actual numbers and types of atoms in a molecule.
 - Examples: H₂O, CO₂, CO, CH₄, H₂O₂, O₂, O₃, and C₂H₄
- Empirical formulas
 - Give the relative numbers and types of atoms in a molecule (they give the lowest wholenumber ratio of atoms in a molecule).
 - Examples: H₂O, CO₂, CO, CH₄, HO, CH₂

Picturing Molecules

- Molecules occupy three-dimensional space.
- However, we often represent them in two dimensions.
- The **structural formula** gives the connectivity between individual atoms in the molecule.
- The structural formula may or may not show the three-dimensional shape of the molecule.
- If the structural formula does not show the shape of the molecule, then either a perspective drawing, ball-and-stick model, or space-filling model is used.
 - Perspective drawings use dashed lines and wedges to represent bonds receding and emerging from the plane of the paper.
 - Ball-and-stick models show atoms as contracted spheres and the bonds as sticks. The angles in the ball-and-stick model are accurate.
 - Space-filling models give an accurate representation of the relative sizes of the atoms and the 3D shape of the molecule.

2.6 Ions and Ionic Compounds

- If electrons are added or removed from a neutral atom, an **ion** is formed.
- When an atom or molecule loses electrons, it becomes positively charged.
 - Positively charged ions are called cations.
- When an atom or molecule gains electrons, it becomes negatively charged.
 - Negatively charged ions are called anions.
- In general, metal atoms tend to lose electrons, and nonmetal atoms gain electrons.
- When molecules lose electrons, polyatomic ions are formed (e.g. SO₄²⁻, NO₃¹⁻)

Predicting Ionic Charges

- An atom or molecule can lose more than one electron.
- Many atoms gain or lose enough electrons to have the same number of electrons as the nearest noble gas (group 18 or 8A).
- The number of electrons an atom loses is related to its position on the periodic table.

Ionic Compounds

- A great deal of chemistry involves the transfer of electrons between species.
- Example:
 - To form NaCl. the neutral sodium atom, Na, must lose an electron to become a cation: Na1+.
 - The electron cannot be lost entirely, so it is transferred to a chlorine atom, Cl, which then becomes an anion: Cl¹⁻.
 - The Na¹⁺ and Cl¹⁻ ions are attracted to form an ionic NaCl lattice, which crystallizes.
- NaCl is an example of an **ionic compound** consisting of positively charged cations and negatively charged anions.
 - Important: note that there are no easily identified NaCl molecules in the ionic lattice.
 Therefore we cannot use molecular formulas to describe ionic substances.
- In general, ionic compounds are usually combinations of metals and nonmetals, whereas molecular compounds are generally composed of nonmetals only.
- Writing empirical formulas for ionic compounds:
 - You need to know the ions of which it is composed.
 - The formula must reflect the electrical neutrality of the compound.
 - You must combine cations and anions in a ratio so that the total positive charge is equal to the total negative charge.
 - Example: consider the formation of Mg₃N₂:
 - Mg loses two electrons to become Mg²⁺
 - Nitrogen gains three electrons to become N³-
 - For a neutral species, the number of electrons lost and gained must be equal.
 - However, Mg can lose electrons only in twos, and N can accept electrons only in threes.
 - Therefore, Mg needs to form 3 Mg²⁺ ions (total 3 x 2 positive charges) and 2 N atoms need to form 2 N³⁻ ions (total 2 x 3 negative charges)
 - Therefore, the formula is Mg₃N₂

•

Chemistry and Life: Elements Required by Living Organisms

- Of the 112 elements known, only about 26 are required for life.
- Water accounts for more than 70 percent of the mass of the cell.
- Carbon is the most common solid constituent of cells.
- The most important elements for life are H, C, N, O, P, and S (red).
- The next most important ions are Na¹⁺, Mg²⁺, K¹⁺, Ca²⁺, and Cl¹⁻ (blue)
- The other 15 elements are needed only in trace amounts (green).

2.7 Naming Inorganic Compounds

Names and Formulas of Ionic Compounds

- Chemical nomenclature naming of substances.
- Divided into organic compounds (those containing C, usually in combination with H, O, N, or S) and inorganic compounds (all other compounds)

1. Positive Ions (Cations)

- Cations formed from a metal have the same name as the metal
 - Example: Na¹⁺ = sodium ion
- If the metal can form more than one cation, then the charge is indicated in parentheses in the name.
 - Examples: Cu¹⁺ = copper (I); Cu²⁺ = copper (II) [Stock system]
- Cations formed from nonmetals end in -ium.
 - Example: NH₄¹⁺ ammonium ion

2. Negative lons (anions)

- Monatomic anions (with only one atom) use the ending -ide.
 Example: Cl¹⁻ is chloride ion
- Some simple polyatomic anions also have the ending -ide; hydroxide, cyanide, and peroxide ions.
- Polyatomic ions (with many atoms) containing oxygen are called **oxyanions**.
 - These end in **-ate** or **-ite**. (The one with more oxygen uses **-ate**.)
 - Examples: NO₃¹⁻ is nitrate, NO₂¹⁻ is nitrite.
- Polyatomic anions containing oxygen with additional hydrogens are named by adding hydrogen or bi (one H), dihydrogen (two H), etc. to the name, as follows:
 - CO₃² is the carbonate anion
 - HCO₃ is the hydrogen carbonate (or **bi**carbonate) anion
 - H₂PO₄ is the **dihydrogen** phosphate anion

3. Ionic Compounds

- These are named cation and anion
 - Example: BaBr₂ = barium bromide

Names and Formulas of Acids

- The names of acids are related to the names of **anions**:
 - -ide becomes hydro- ...-ic acid;
 -ate becomes -ic acid;
 -ite becomes -ous acid.
 Examples: HCl hydrochloric acid perchloric acid hypochlorous acid hypochlorous acid

Names and Formulas for binary Molecular Compounds

- Binary molecular compounds contain two elements.
- The most metallic element (i.e., the one farthest to the left on the periodic table) is usually written first. Exception: NH₃ (ammonia)
- If both elements are in the same group, the lower one is written first.
- Greek prefixes are used to indicate the number of atoms (e.g. mono, di, tri).
 - The prefix mono is never used with the first element (i.e., carbon monoxide, CO).
 - Examples:
 - Cl₂O dichlorine monoxide
 N₂O₄ dinitrogen tetroxide
 NF₃ nitrogen trifluoride
 - P₄S₁₀ **tetra**phosphorus *deca*sulfide