Name: _____ Hour: ____ Date: _____

Chemistry: The Combined Gas Law

Solve the following problems. As always, include enough work and show the units to ensure full credit.

- 1. The pressure of a gas changes from 120 kPa to 50 kPa. The volume changes from 45 L to 40 L. If the initial temperature is 81°C, what is the final temperature in °C?
- 2. A sample of nitrogen goes from 21 m³ to 14 m³ and its pressure increases from 100 kPa to 150 kPa. The final temperature is 300 K. What was the initial temperature in Kelvins?
- 3. A sample of argon goes from 500 K to 350 K and its pressure changes from 280 kPa to 380 kPa. If the initial volume is 18 dm³, what is the final volume?
- 4. A sample of neon experiences a pressure drop from 75 kPa to 53 kPa. The temperature increases from 27°C to 93°C. If the initial volume is 12 L, what is the final volume?
- 5. The volume of a sample of helium increases from 5 L to 25 L and its temperature drops from 2000 K to 1750 K. If the initial pressure is 1500 mm Hg, what is the final pressure?
- 6. The temperature of a gas increases from 212°C to 380°C. The volume goes from 30 dm³ to 18 dm³. If the final pressure is 1.85 atm, what was the initial pressure?

Chemistry: The Combined Gas Law

Solve the following problems. As always, include enough work and show the units to ensure full credit.

1. The pressure of a gas changes from 120 kPa to 50 kPa. The volume changes from 45 L to 40 L. If the initial temperature is 81°C, what is the final temperature in °C?

$$\begin{array}{cccc} P_{1} = 120 \text{ kPa} & P_{2} = 50 \text{ kPa} \\ V_{1} = 45 \text{ L} & V_{2} = 40 \text{ L} & \frac{P_{1}V_{1}}{T_{1}} = \frac{P_{2}V_{2}}{T_{2}} & \frac{(20 \text{ kPa})(5 \text{ L})}{354 \text{ K}} = \frac{60 \text{ kPa})(0 \text{ L})}{T_{2}} \\ T_{1} = 81^{\circ}\text{C} + 273 = 354 \text{ K} & T_{2} = x \text{ K} & T_{2} = x \text{ K} & T_{2} = 131 \text{ K} & \Rightarrow & \text{K} - 273 = {}^{\circ}\text{C} \\ & 131 \text{ K} - 273 = {}^{\circ}\text{C} \\ & {}^{\circ}\text{C} = -142^{\circ}\text{C} \end{array}$$

A sample of nitrogen goes from 21 m³ to 14 m³ and its pressure increases from 100 kPa to 150 kPa. The final temperature is 300 K. What was the initial temperature in Kelvins?

P ₁ = 100 kPa	$P_2 = 150 \text{ kPa}$		
$V_{1} = 21 dm^{3}$	$V_2 = 14 \text{ dm}^3 \frac{P_1 V_1}{P_1 V_1} = \frac{P_2 V_2}{P_2 V_2}$	(00 kPa (1 dm°	= (50 kPa (4 dm ³)
$T_1 = x K$	$T_2 = 300 \text{ K}$ T_1 T_2	T ₁	300 K

3. A sample of argon goes from 500 K to 350 K and its pressure changes from 280 kPa to 380 kPa. If the initial volume is 18 dm³, what is the final volume?

$$\begin{array}{cccc} P_{1} = 280 \text{ kPa} & P_{2} = 380 \text{ kPa} \\ V_{1} = 18 \text{ dm}^{3} & V_{2} = x \text{ dm}^{3} & \frac{P_{1}V_{1}}{T_{1}} = \frac{P_{2}V_{2}}{T_{2}} & \underbrace{\begin{array}{c} \pounds 80 \text{ kPa} & 480 \text{ kPa} \\ \hline 500 \text{ K} & 500 \text{ K} \end{array}}_{V_{2}} = \underbrace{\begin{array}{c} \pounds 80 \text{ kPa} & 480 \text{ kPa} \\ \hline 350 \text{ K} & 480 \text{ kPa} \\ \hline 350 \text{ K} & 480 \text{ kPa} \\ \hline 350 \text{ K} & V_{2} = 9.3 \text{ dm}^{3} \end{array}$$

4. A sample of neon experiences a pressure drop from 75 kPa to 53 kPa. The temperature increases from 27°C to 93°C. If the initial volume is 12 L, what is the final volume?

$P_1 = 75 \text{ kPa}$	$P_2 = 53 \text{ kPa}$			to LD- XL
$V_1 = 12 L$	$V_2 = x dm^3$	$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$	<u>(5 kPa (2L</u>	<u>€3 кРа €2</u>
$T_1 = 27^{\circ}C + 273 = 300 K$	$T_2 = 93^{\circ}C + 273 = 366 K$		300 K	366 K

 $V_2 = 20.7 L$

 $T_1 = 300 \text{ K}$

5. The volume of a sample of helium increases from 5 L to 25 L and its temperature drops from 2000 K to 1750 K. If the initial pressure is 1500 mm Hg, what is the final pressure?

$$\begin{array}{ccc} P_{1} = 1500 \text{ mm Hg} & P_{2} = x \text{ mm Hg} \\ V_{1} = 5 \text{ L} & V_{2} = 25 \text{ L} \\ T_{1} = 2000 \text{ K} & T_{2} = 1750 \text{ K} \end{array} \qquad \begin{array}{c} \frac{P_{1}V_{1}}{T_{1}} = \frac{P_{2}V_{2}}{T_{2}} & \underbrace{\left(500 \text{ mm Hg}\right)\left(L\right)}_{2000 \text{ K}} = \underbrace{\left(\frac{P_{2}}{2}\right)\left(\frac{P_{2}}{2}\right)}_{1750 \text{ K}} \end{array}$$

 $P_2 = 262.5 \text{ mm Hg}$

6. The temperature of a gas increases from 212°C to 380°C. The volume goes from 30 dm³ to 18 dm³. If the final pressure is 1.85 atm, what was the initial pressure?

$$\begin{array}{ccc} P_{1} = x \ atm & P_{2} = 1.85 \ atm \\ V_{1} = 30 \ dm^{3} & V_{2} = 18 \ dm^{3} \\ T_{1} = 212^{\circ}\text{C} + 273 = 485 \ \text{K} & T_{2} = 380^{\circ}\text{C} + 273 = 653 \ \text{K} \end{array} \qquad \begin{array}{c} P_{1}V_{1} \\ T_{1} = & T_{2} \\ T_{2} \end{array} \qquad \begin{array}{c} P_{1}V_{2} \\ T_{1} = & T_{2} \\ P_{1} = & 0.82 \ atm \end{array} \qquad \begin{array}{c} e_{1}V_{2} \\ e_{1}V_{2} \\ e_{2}V_{2} \\ e_{3}V_{3} \\ e_{$$

The Combined Gas Law

1.

$$P_{1} = 120 \text{ kPa} \qquad P_{2} = 50 \text{ kPa} \qquad P_{1}V_{1} = \frac{P_{2}V_{2}}{T_{1}} = \frac{Q_{2}V_{2}}{364 \text{ K}} = \frac{60 \text{ kPa} \text{ sol} \text{ L}}{T_{2}}$$

$$T_{1} = 81^{\circ}\text{C} + 273 = 354 \text{ K} \qquad T_{2} = x \text{ K}$$

$$T_{2} = 131 \text{ K} \Rightarrow \text{ K} - 273 = ^{\circ}\text{C}$$

$$131 \text{ K} - 273 = ^{\circ}\text{C}$$

$$2 \qquad P_{1} = 100 \text{ kPa} \qquad P_{2} = 150 \text{ kPa} \qquad P_{1}V_{1} = \frac{P_{2}V_{2}}{T_{2}} \qquad (00 \text{ kPa} \text{ sol} 1 \text{ dm}^{3} = \frac{650 \text{ kPa} \text{ sol} 4 \text{ dm}^{3}}{300 \text{ K}}$$

$$V_{1} = 21 \text{ dm}^{3} \qquad V_{2} = 14 \text{ dm}^{3} \qquad P_{1}V_{1} = \frac{P_{2}V_{2}}{T_{2}} \qquad (00 \text{ kPa} \text{ sol} 1 \text{ dm}^{3} = \frac{650 \text{ kPa} \text{ sol} 4 \text{ dm}^{3}}{300 \text{ K}}$$

$$T_{1} = 300 \text{ K}$$
3.

$$P_{1} = 280 \text{ kPa} \qquad P_{2} = 380 \text{ kPa} \qquad V_{1} = 12 \text{ dm}^{3} \qquad V_{2} = x \text{ dm}^{3} \qquad V_{2} = x \text{ dm}^{3} \qquad V_{2} = x \text{ dm}^{3} \qquad V_{2} = 350 \text{ K}$$

$$V_{2} = 9.3 \text{ dm}^{3}$$
4.

$$P_{1} = 75 \text{ kPa} \qquad P_{2} = 53 \text{ kPa} \qquad V_{2} = x \text{ dm}^{3} \qquad V_{1} = \frac{P_{2}V_{2}}{T_{2}} \qquad (500 \text{ kPa} \text{ sol} 2 \text{ L})^{-} = \frac{63 \text{ kPa} \text{ sol} 4 \text{ dm}^{3}}{350 \text{ K}}$$

$$V_{2} = 9.3 \text{ dm}^{3}$$
4.

$$P_{1} = 75 \text{ kPa} \qquad P_{2} = 53 \text{ kPa} \qquad V_{2} = x \text{ dm}^{3} \qquad T_{1} = 27^{\circ} \text{ C} + 273 = 300 \text{ K}$$

$$T_{2} = 39^{\circ} \text{ C} + 273 = 366 \text{ K}$$

$$V_{2} = 20.7 \text{ L}$$
5.

$$P_{1} = 1500 \text{ mm Hg} \qquad P_{2} = x \text{ mm Hg} \qquad V_{2} = 26 \text{ L} \qquad T_{1} = \frac{P_{2}V_{2}}{T_{2}} \qquad (500 \text{ mm Hg} \text{ sol} 1 \text{ dm}^{3} \text{$$

Answers: 1. -142°C 2. 300 K 3. 9.3 dm³ 4. 20.7 L 5. 262.5 mm Hg 6. 0.82 atm